[1]RENAUD G. In situ GISAXS studies of growing nanoparticles[D]. France: Joseph Fourier University, 2011.
[2]REN Y, DAI Y Y, ZHANG B, et al. Tunable magnetic properties of heterogeneous nanobrush: From nanowire to nanofilm[J]. Nanoscale Research Letters, 2010, 5(5): 853-858.
[3]CHIK H, XU J M. Nanometric superlattices: Non-lithographic fabrication, materials, and prospects[J]. Materials Science and Engineering, 2004, 43(4): 103-138.
[4]LIU Q F, WANG J B, YAN Z J, et al. The effect of diameter on micro-magnetic properties of Fe0.68Ni0.32 nanowire arrays[J]. Journal of Magnetism and Magnetic Materials, 2004, 278(3): 323-327.
[5]ZHAN L, WANG S, DING L X, et al. Binder-free Co—CoOx nanowire arrays for lithium ion batteries with excellent rate capability and ultra-long cycle life[J]. Journal of Materials Chemistry A, 2015, 39(3): 19711-19717.
[6]CHENG W, MO G, XING X Q, et al. GISAXS and SAXS studies on the spatial structures of Co nanowire arrays[J]. Chinese Physics C, 2011, 35(9): 875-879.
[7]杨迎国,阴广志,冯尚蕾,等. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究[J]. 物理学报,2017,66(1):331-339. YANG Yingguo, YIN Guangzhi, FENG Shanglei, et al. An in-situ real time study of the perovskite film micro-structural evolution in a humid environment by using synchrotron based characterization technique[J]. Acta Physica Sinica, 2017, 66(1): 331-339(in Chinese).
[8]LI M, YANG Y G, WANG Z K, et al. Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability[J]. Advanced Materials, 2019, 31(25): 1901519.
[9]YANG Y, FENG S, XU W, et al. Enhanced crystalline phase purity of CH3NH3PbI3-xClx film for high-efficiency hysteresis-free perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 23141-23151.
[10]MUELLER-BUSCHBAUM P. GISAXS and GISANS as metrology technique for understanding the 3D morphology of block copolymer thin films[J]. European Polymer Journal, 2016, 81: 470-493.
[11]MÜLLER-BUSCHBAUM P, CUBITT R, PETRY W. Nanostructured diblock copolymer films: A grazing incidence small-angle neutron scattering study[J]. Langmuir, 2003, 19(19): 7778-7782.
[12]MÜLLER-BUSCHBAUM P, GUTMANN J S, CUBITT R, et al. Grazing incidence small-angle neutron scattering: An advanced scattering technique for the investigation of nanostructured polymer films[J]. Physica B: Condensed Matter, 2004, 350(1-3): 207-210.
[13]SALDITT T, METZGER T H, PEISL J, et al. Determination of the height-height correlation function of rough surfaces from diffuse X-ray scattering[J]. Europhysics Letters, 1995, 32(4): 331-336.
[14]REN Y, LIU Q F, LI S L, et al. The effect of structure on magnetic properties of Co nanowire arrays[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(3): 226-230.
[15]REN Y, WANG J, LIU Q, et al. Abnormal coercivity dependence on the diameter of Co nanowires in anodic aluminium oxide templates[J]. Journal of Physics D: Applied Physics, 2009, 42(10): 105002.
[16]REN Y, WANG J, LIU Q, et al. Tailoring coercivity and magnetic anisotropy of Co nanowire arrays by microstructure[J]. Journal of Materials Science, 2011, 46(23): 7545-7550.
[17]SAMARDAK A S, SUKOVATITSINA E V, OGNEV A V, et al. Geometry dependent magnetic properties of Ni nanowires embedded in self-assembled arrays[J]. Physics Procedia, 2011, 22: 549-556.
[18]PIPICH V, FU Zhendong. KWS-3: Very small angle scattering diffractometer with focusing mirror[J]. Journal of Large-scale Research Facilities, 2015, 1(A31): 1-3.
[19]PIPICH V. QtiKWS: User-friendly program for reduction, visualization, analysis and fit of SA(N)S data[EB/OL]. [2019-12-20]. http:∥www.qtikws.de.
[20]BURLE J, DURNIAK C, FISHER J M, et al. BornAgain: Software for simulating and fitting X-ray and neutron small-angle scattering at grazing incidence[EB/OL]. [2019-12-20]. http:∥www.bornagainproject.org. |