[1]MEITNER L, FRISCH O R. Disintegration of uranium by neutrons: A new type of nuclear reaction[J]. Nature, 1939, 143: 239-240.
[2]BOHR N. Disintegration of heavy nuclei[J]. Nature, 1939, 143: 330.
[3]BROSA U, GROSSMANN S, MLLER A. Nuclear scission[J]. Physics Reports, 1990, 197(4): 167-262.
[4]BENLLIURE J, GREWE A, de JONG M, et al. Calculated nuclide production yields in relativistic collisions of fissile nuclei[J]. Nuclear Physics A, 1998, 628: 458-478.
[5]SCHMIDT K H, JURADOA B, AMOUROUX C, et al. General description of fission observables: GEF model code[J]. Nuclear Data Sheets, 2016, 131: 107-221.
[6]WAHL A C. Systematics of fissionproduct yields[R]. [S. l]: Office of Scientific & Technical Information, 2002.
[7]GOUTTE H, BERGER J F, CASOLI P, et al. Microscopic approach of fission dynamics applied to fragment kinetic energy and mass distributions in 238U[J]. Physical Reviwe C, 2005, 71(2): 024316.
[8]DUBRAY N, GOUTTE H, DELATOCHE JP. Structure properties of 226Th and 256,258,260Fm fission fragments: Meanfield analysis with the Gogny force[J]. Physical Reviwe C, 2008, 77(1): 014310.
[9]NIX J R. Further studies in the liquiddrop theory on nuclear fission[J]. Nuclear Physics A, 1969, 130(2): 241-292.
[10]RANDRUP J, MLLER P. Brownian shape motion on five dimensional potential energy surface:nuclear fissionfragment mass distributions[J]. Physical Review Letters, 2011, 106: 132503.
[11]MARUHN J, GREINER W. The asymmetrie two center shell model[J]. Zeitschrift für Physik, 1972, 251: 431-457.
[12]LIU L L, WU X Z, CHEN Y J, et al. Study of fission dynamics with a threedimensional Langevin approach[J]. Physical Review C, 2019, 99(4): 044614.
[13]ARITOMO Y, CHIBA S. Fission process of nuclei at low excitation energies with a Langevin approach[J]. Physical Review C, 2013, 88(4): 044614.
[14]ARITOMO Y, CHIBA S, IVANYUK F. Fission dynamics at low excitation energy[J]. Physical Review C, 2014, 90(5): 054609.
[15]USANG M D, IVANYUK F A, ISHIZUKA C, et al. Effects of microscopic transport coefficients on fission observables calculated by the Langevin equation[J]. Physical Review C, 2016, 94(4): 044602.
[16]WANG Zhiming, ZHU Wenjie, ZHONG Chunlai, et al. New calculations of fivedimensional fission barriers for actinide nuclei[J]. Nuclear Physics A, 2019, 989: 81-96.
[17]LAWRENCE J N. Static fissionbarrier calculations of a twoparameter liquid drop[J]. Physical Review, 1965, 139(5): B1227.
[18]SCHMITT C, POMORSKI K, NERLOPOMORSKA B, et al. Performance of the Fourier shape parametrization for the fission process[J]. Physical Review C, 2017, 95(3): 034612.
[19]POMORSKI K, BLANCO J M, KOSTRYUKOV P V, et al. Fission fragment yields of Th to Rf eveneven nuclei[J]. Chinese Physics C, 2021, 45(5): 054109.[20]POMORSKI K, DUDEK J. Nuclear liquid-drop model and surfacecurvature effects[J]. Physical Review C, 2003, 67(4): 044316.
[21]STRUTINSKY M. Shell effects in nuclear masses and deformation energies[J]. Nuclear Physics A, 1967, 95(2): 420-442.
[22]NILSSON S G. On the nuclear structure and stability of heavy and superheavy elements[J]. Nuclear Physics A, 1969, 131(1): 1-66.
[23]WERNER E, WIO H S, HOFMANN H, et al. Nuclear dissipation with residual interactions studied by means of the mori formalism[J]. Zeitschrift für Physik A: Atoms and Nuclei, 1981, 299: 231-239.
[24]POMORSKI K, IVANYUK F A, NERLOPOMORSKA B. Mass distribution of fission fragments within the BornOppenheimer approximation[J]. European Physical Journal A, 2017, 53(3): 59-63.
[25]MYERS W D, S'WIATECKI W J. Nuclear properties according to the ThomasFermi model[J]. Nuclear Physical A, 1996, doi: 10.1016/0375-9474(95)00509-9.
[26]LU B N, ZHAO E G, ZHOU S G. Potential energy surfaces of actinide nuclei from a multidimensional constrained covariant density functional theory: Barrier heights and saddle point shapes[J]. Physical Review C, 2012, 85(1): 011301(R).
[27]PLEASONTON F, FERGUSON R L. Prompt gamma rays emitted in the thermalneutroninduced fission of 235U[J]. Physical Review C, 1972, 6(3): 1023-1026.
|