[1]HOFMANN S, MUNZENBERG G. The discovery of the heaviest elements[J]. Reviews of Modern Physics, 1999, 72(3): 733-767.
[2]GORIELY S. New fission fragment distributions and rprocess origin of the rareearth elements[J]. Physical Review Letters, 2013, 111(24): 242502.
[3]SCHUNCK N, ROBLEDO L M. Microscopic theory of nuclear fission: A review[J]. Reports on Progress in Physics, 2016, 79(11): 116301.
[4]KRAPPE H J, POMORSKI K. Theory of nuclear fission[M]. Berlin: Springer, 2012.
[5]SCHUNCK N, REGNIER D. Theory of nuclear fission[J]. Nuclear Theory, 2022, doi.org/10.48550/arXiv.2201.02719.
[6]DUBRAY N, GOUTTE H, DELAROCHE J P. Structure properties of 226Th and 256,258,260Fm fission fragments: Mean-field analysis with the Gogny force[J]. Physical Review C, 2008, 77(1): 014310.
[7]YOUNES W, GOGNY D. Nuclear scission and quantum localization[J]. Physical Review Letters, 2011, 107(13): 132501.
[8]SCHUNCK N, DUKE D, CARR H, et al. Description of induced nuclear fission with Skyrme energy functionals: Static potential energy surfaces and fission fragment properties[J]. Physical Review C, 2014, 90(5): 054305.
[9]RODRGUEZGUZMN R, ROBLEDO L M. Microscopic description of fission in uranium isotopes with the Gogny energy density functional[J]. Physical Review C, 2014, 89(5): 054310.
[10]LU B N, ZHAO E G, ZHOU S G. Potential energy surfaces of actinide nuclei from a multidimensional constrained covariant density functional theory: Barrier heights and saddle point shapes[J]. Physical Review C, 2012, 85(1): 011301.
[11]LU B N, ZHAO J, ZHAO E G, et al. Multidimensionallyconstrained relativistic meanfield models and potentialenergy surfaces of actinide nuclei[J]. Physical Review C, 2014, 89(1): 014323 .
[12]BENDER M, RUTZ K, REINHARD P G, et al. Potential energy surfaces of superheavy nuclei[J]. Physical Review C, 1998, 58(4): 2126-2132.
[13]BARAN A, KOWAL M, REINHARD P G, et al. Fission barriers and probabilities of spontaneous fission for elements with Z≥100[J]. Nuclear Physics A, 2016, 944: 442-470.
[14]LARSSON S E, RAGNARSSON I, NILSSON S G, et al. Fission barriers and the inclusion of axial asymmetry[J]. Physics Letters B,1987, doi:10.1016/03702693(72)90243-2.
[15]STASZCZAK A, BARAN A, DOBACZEWSKI J, et al. Microscopic description of complex nuclear decay: Multimodal fission[J]. Physical Review C, 2009, 80(1): 014309.
[16]WARDA M, EGIDO J, ROBLEDO L M, et al. Selfconsistent calculations of fission barriers in the Fm region[J]. Physical Review C, 2002, 66(1): 014310.
[17]LI Z P, NIKIC' T, VRETENAR D, et al. Relativistic energy density functionals: Lowenergy collective states of 240Pu and 166Er[J]. Physical Review C, 2010, 81(6): 064321.
[18]PEI J C, NAZAREWICZ W, SHEIKH J A, et al. Fission barriers of compound superheavy nuclei[J]. Physical Review Letters, 2009, 102(19): 192501.
[19]SCHUNCK N, DUKE D, CARR H, et al. Description of induced nuclear fission with Skyrme energy functionals, Ⅱ: Finite temperature effects[J]. Physical Review C, 2015, 91(3): 034327.
[20]SIMENEL C, UMAR A S. Formation and dynamics of fission fragments[J]. Physical Review C, 2014, 89(3): 031601.
[21]BULGAC A, MAGIERSKI P, ROCHE K J, et al. Induced fission of 240Pu within a realtime microscopic framework[J]. Physical Review Letters, 2016, 116(12): 122504.
[22]YUSUKE T, DENIS L, SAKIR A, et al. Microscopic phasespace exploration modeling of 258Fm spontaneous fission[J]. Physical Review Letters, 2018, 118(15): 152501.
[23]BRINK D M, WEIGUNY A. The generatorcoordinate method and the random phase approximation[J]. Physics Letters B, 2016, doi: 10.1016/03702693(68)90361-4.
[24]BERGER J F, GIROD M, GOGNY D, et al. Timedependent quantum collective dynamics applied to nuclear fission[J]. Computer Physics Communications,1961, doi: 10.1016/0010-4655(91)90263K.
[25]GOUTTE H, BERGER J F, CASOLI P, et al. Microscopic approach of fission dynamics applied to fragment kinetic energy and mass distributions in 238U[J]. Physical Review C, 2005, 71(2): 024316.
[26]YOUNES W, GOGNY D. Fragment yields calculated in a timedependent microscopic theory of fission[R]. 2012, doi:10.1007/BF01063160.
[27]REGNIER D, VERRIRE M, DUBRAY N, et al. FELIX10: A finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation[J]. Computer Physics Communications, doi: 10.1016/j.cpc.2015.11.013.
[28]REGNIER D, DUBRAY N, VERRIERE M, et al. FELIX2.0: New version of the finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation[J]. Computer Physics Communications, 2017, doi:10.1016/j.cpc.2017.12.007.
[29]REGNIER D, DUBRAY N, SCHUNCK N, et al. Microscopic description of fission dynamics: Toward a 3D computation of the time dependent GCM equation[J]. The European Physical Journal Conferences, 2017, doi:10.1051/epjconf/201714604043.
[30]REGNIER D, DUBRAY N, SCHUNCK N, et al. Fission fragment charge and mass distributions in 239Pu(n,f) in the adiabatic nuclear energy density functional theory[J]. Physical Review C, 2016, 93(5): 054611.
[31]ZDEB A, DOBROWOLSKI A, WARDA M, et al. Fission dynamics of 252Cf[J]. Physical Review C, 2017, 95(5): 054608.
[32]REGNIER D, DUBRAY N, SCHUNCK.N, et al. From asymmetric to symmetric fission in the fermium isotopes within the timedependent generatorcoordinatemethod formalism[J]. Physical Review C, 2019, 99(2): 024611.
[33]HIZAWA N, HAGINO K, YOSHIDA K, Generator coordinate method with a conjugate momentum: Application to particle number projection[J]. Physical Review C, 2021, 103(3): 034313.
[34]ZHAO J, XIANG J, LI Z P, et al. Timedependent generatorcoordinatemethod study of massasymmetric fission of actinides[J]. Physical Review C, 2019, 99(5): 054613.
[35]ZHAO J, NIKIC' T, VRETENAR D, et al. Microscopic selfconsistent description of induced fission dynamics: Finite temperature effects[J]. Physical Review C, 2019, 99(1): 014618.
[36]孟杰,郭建友,李剑,等. 原子核物理中的协变密度泛函理论[J]. 物理学进展,2011,31(4):199-336.
MENG Jie, GUO Jianyou, LI Jian, et al. Covariant density functional theory in nuclear physics[J]. Progress in Physics, 2011, 31(4): 199-336(in Chinese).
[37]ZHAO J, LU B N, VRETENAR D, et al. Multidimensionally constrained relativistic meanfield study of triplehumped barriers in actinides[J]. Physical Review C, 2015, 91(1): 014321.
[38]ZHAO J, LU B N, VRETENAR D, et al. Multidimensionally constrained relativistic HartreeBogoliubov study of spontaneous nuclear fission[J]. Physical Review C, 2015, 92(6): 064315.
[39]TAO H, ZHAO J, LI Z P, et al. Microscopic study of induced fission dynamics of 226Th with covariant energy density functionals[J]. Physical Review C, 2017, 96(2): 024319.
[40]陶辉. 原子核裂变动力学的协变密度泛函理论研究[D]. 重庆:西南大学,2017.
[41]GIROD M, GRAMMATICOS B. The zeropoint energy correction and its effect on nuclear dynamics[J]. Nuclear Physics A, 1979, 330(1): 4052.
[42]LI Z P, NIKIC' T, VRETENAR D, et al. Coexistence of nuclear shapes: Selfconsistent meanfield and beyond[J]. Journal of Physics G: Nuclear and Particle Physics, 2016, 43(2): 024005.
[43]NIKIC' T, LI Z P, VRETENAR D, et al. Beyond the relativistic meanfield approximation, Ⅲ: Collective Hamiltonian in five dimensions[J]. Physical Review C, 2009, 79(3): 034303.
[44]LI Z P, NIKIC' T, VRETENAR D, et al. Microscopic analysis of nuclear quantum phase transitions in the N approximate to 90 region[J]. Physical Review C, 2009, 79(5): 054301.
[45]INGLIS D R. Nuclear moments of inertia due to nucleon motion in a rotating well[J]. Physical Review, 1956, 103(6): 1 7861 795.
[46]BELYAEV S T. Concerning the calculation of the nuclear moment of inertia[J]. Nuclear Physics, 1995, doi: 10.1016/00295582(61)903844.
[47]ZHAO P W, LI Z P, YAO J M, et al. New parametrization for the nuclear covariant energy density functional with a pointcoupling interaction[J]. Physical Review C, 2010, 82(5): 054319.
[48]BENDER M, RUTZ K, REINHARD P G, et al. Pairing gaps from nuclear meanfield models[J]. Europeam Physical Journal A, 2000, 8(1): 5975.
[49]REGNIER D, DUBRAY N, SCHUNCK N, et al. From asymmetric to symmetric fission in the fermium isotopes within the timedependent generatorcoordinatemethod formalism[J]. Physical Review C, 2019, 99(2): 024611.
[50]FAUST H R. A model for fragment excitation and kinetic energy in nuclear fission[J]. European Physical Journal A, 2002, 14(4): 459468.
[51]HULET E K, WILD J F, DOUGAN R J, et al. Spontaneous fission properties of 258Fm, 259Md, 260Md, 258No, and 260[104]: Bimodal fission[J]. Physical Review C, 1989, 40(2): 770784.
[52]FLYNN K F, GINDLER J E, GLENDENIN L E, et al. Distribution of mass in thermalneutroninduced fission of 257Fm[J]. Physical Review C, 1975, 12(5): 1 4781 482.
[53]HOFFMAN D C, WIHELMY J B, WEBER J, et al. 12.3min 256Cf and 43min 258Md and systematics of the spontaneous fission properties of heavy nuclides[J]. Physical Review C, 1980, 21(3): 972981.
[54]HAN R, WARDA M, ZDEB A, et al. Scission configuration in selfconsistent calculations with neck constraints[J]. Physical Review C, 2021, 104(6): 064602.
|