[1]SCHMIDT K H, JURADO B. Review on the progress in nuclear fissionexperimental methods and theoretical descriptions[J]. Reports on Progress in Physics, 2018, 81: 106301.
[2]JACHIMOWICZ P, KOWAL M, SKALSKI J, et al. Adiabatic fission barriers in super heavy nuclei[J]. Physical Review C, 2017, 95: 014303.
[3]SCHMIDT K H, JURADO B, AMOUROUX C, et al. General description of fission observables: GEF model code[J]. Nuclear Data Sheets, 2016, 131: 107.
[4]BULGAC A, MAGIERSKI P, ROCHE K J, et al. Induced fission of 240Pu within a realtime microscopic framework[J]. Physical Review Letters, 2016, 116(12): 122504.
[5]GOUTTE J H, BERGER J F. Microscopic approach of fission dynamics applied to fragment kinetic energy and mass distributions in 238U[J]. Physical Review C, 2005, 71: 024316.
[6]PEI J C, NAZAREWICZ W, SHEIKH J A, et al. Fission barriers of compound superheavy nuclei[J]. Physical Review Letters, 2009, 102: 192501.
[7]ZHOU S G. Multidimensionally constrained covariant density functional theories: Nuclear shapes and potential energy surfaces[J]. Physica Scripta, 2016, 91: 063008.
[8]SCHUNCK N, ROBLEDO L M. Microscopic theory of nuclear fission: A review[J]. Reports on Progress in Physics, 2016, 79: 116301.
[9]BROSA U, GROSSMANN S, MULLER A, et al. Nuclear scission[J]. Nuclear Physics A, 1989, 502: 423-442.
[10]BROSA U, GROSSMANN S, MULLER A. Nuclear scission[J]. Physics Reports, 1990, 197(4): 167-262.
[11]FAN T S, HU J M, BAO S L. Study of multichannel theory for the neutron induced fissions of actinide nuclei[J]. Nuclear Physics A, 1995, 591(2): 161-181.
[12]BROSA U, KNITTER H H, FAN T S, et al. Systematics of fissionchannel probabilities[J]. Physical Review C, 1999, 59: 767.
[13]USANG M D, IVANYUK F A, ISHIZUKA C, et al. Analysis of the total kinetic energy of fission fragments with the Langevin equation[J]. Physical Review C, 2017, 96: 064617.
[14]MOLLER P, NIX J R, MYERS W D, et al. Nuclear groundstate masses and deformations[J]. Atomic Data & Nuclear Data Tables, 1995, 59(2): 185-381.
[15]MOLLER P, SIERK A J, ICHIKAWA T, et al. Heavyelement fission barriers[J]. Physical Review C, 2009, 79(6): 064304.
[16]MOLLER P, NIX J R, SWIATECKI W J. New developments in the calculation of heavyelement fission barriers[J]. Nuclear Physics A, 1989, 492(3): 349-387.
[17]MOLLER P, RANDRUP J. Calculated fissionfragment yield systematics in the region 74≤Z≤94 and 90≤N≤150[J]. Physical Review C, 2015, 91: 044316.
[18]MOLLER P, MADLAND D G, SIERK A J, et al. Nuclear fission modes and fragment mass asymmetries in a fivedimensional deformation space[J]. Nature, 2001, 409: 785-790.
[19]POENARU D, GHERGHESCU R, GREINERW. Potential energy surfaces for cluster emitting nuclei[J]. Physical Review C, 2006, 73: 014608.
[20]RANDRUP J, MOLLER P. Brownian shape motion on fivedimensional potentialenergy surfaces: Nuclear fissionfragment mass distributions[J]. Physical Review Letters, 2011, 106: 132503.
[21]ARITOMO Y, CHIBA S. Fission process of nuclei at low excitation energies with a Langevinapproach[J]. Physical Review C, 2013, 88: 044614.
[22]SCHMIDT K, JURADO B. Review on the progress in nuclear fissionexperimental methods and theoretical descriptions[J]. Reports on Progress in Physics, 2018, 81: 106301.
[23]LIU L, CHEN Y, WU X, et al. Analysis of nuclear fission properties with the Langevin approach in Fourier shape parametrization[J]. Physical Review C, 2021, 103: 044601.
[24]POMORSKI K, DUREK J. Nuclear liquiddrop model and surfacecurvature effects[J]. Physical Review C, 2003, 67: 044316.
[25]MYERS W D, SWIATECKI W J. Nuclear masses and deformations[J]. Nuclear Physics, 1966, 81(1): 1-60.
[26]CHASMAN R R. Simple momentumdependent nuclear central potential[J]. Physical Review C, 1971, doi: 10.1103/PhysRevC.3.1803.
[27]BOLETERLI M, FISET E O, NIX J R, et al. New calculation of fission barriers for heavy and superheavy nuclei[J]. Physical Review C, 1972, doi: 10.1146/annurev.ns.22.120172.000433.
[28]MOLLER P, NILSSON S G, NIX J R. Calculated groundstate properties of heavy nuclei[J]. Nuclear Physics A, 1974, 229(2): 292-319.
[29]STRUTINSKY V M. Shell effects in nuclear masses and deformation energies[J]. Nuclear Physics A, 1967, 95(2): 420-442.
[30]STRUTINSKY V M. “Shells” in deformed nuclei[J]. Nuclear Physics A, 1967, 122(1): 1-33.
[31]OLOFSSON H, BENGTSSON R, MOLLER P. Particle number projection in the macroscopicmicroscopic approach[J]. Nuclear Physics A, 2007, 784(1): 104-146.
[32]LAWRENCE J N. Static fissionbarrier calculations of a twoparameter liquid drop[J]. Physical Review, 1965, doi: 10.1103/PhysRev.139.B1227.
[33]TRENTALANGE S, KOONIN S E, SIERK A J. Shape parametrization for liquiddrop studies[J]. Physical Review C, 1980, 22(3): 1159-1167.
[34]BRACK M, DAMGAARD J, JENSEN A S, et al. Funny hills: The shellcorrection approach to nuclear shell effects and its applications to the fission process[J]. Reviews of Modern Physics, 1972, 44: 320-406.
[35]ADEEV G D, CHERDANTSEV P A, GAMALYA I A. Energy surfaces of 238U in parametrization of cassinianovaloids[J]. Physics Letters B, 1971, 35(2): 125-128.
[36]GRAMMATICOS B. A semiclassical model for asymmetric fission[J]. Physics Letters B, 1973, 44(4): 343-346.
[37]SWIATECKI W J. Three lectures on macroscopic aspects of nuclear dynamics[J]. Progress in Particle & Nuclear Physics, 1980, 4: 383-450.
[38]NIX J R. Further studies in the liquid-drop theory on nuclear fission[J]. Nuclear Physics A, 1969, 130(2): 241-292.
[39]MOLLER P, NIX J. Nuclear masses from a unified macroscopicmicroscopic model[J]. Atomic Data & Nuclear Data Tables, 1988, 39(2): 213-223.
[40]钟春来. 裂变势能曲面计算和锕系元素裂变产额的Brosa模型研究[D]. 北京大学,2012.
[41]ZHU X, WANG Z M, FAN T S, et al. Macroscopicmicroscopic calculations of fission potential surface of uranium isotopes in the three quadratic surfaces parametrization[J]. Communications in Theoretical Physics, 2020, 72: 105301.
[42]ZHONG C L, FAN T S. Study of fission barrier heights of uranium isotopes by the macroscopicmicroscopic method[J]. Communications in Theoretical Physics, 2014, doi: 10.1088/02536102/62/3/18.
[43]WANG Z M, ZHU W J, ZHU X, et al. 236U multimodal fission paths on a five-dimensional deformation surface[J]. Communications in Theoretical Physics, 2019, 71: 417-420.
[44]WANG Z M, ZHU W J, ZHONG C L, et al. New calculations of five-dimensional fission barriers for actinide nuclei[J]. Nuclear Physics A, 2019, 989: 81-96.
[45]CAPOTE R, HERMAN M, OBLOINSK P, et al. RIPLreference input parameter library for calculation of nuclear reactions and nuclear data evaluations[J]. Nuclear Data Sheets, 2009, 110(12): 3107-3214.
|